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We investigate the influence of an interchain coupling on the spiral ground-state correlations of a spin-1/2
Heisenberg model consisting of a two-dimensional array of coupled chains with nearest- �J1� and frustrating
next-nearest-neighbor �J2� in-chain exchange couplings. Using the coupled cluster method we calculate the
transition point between the commensurate and the incommensurate �spiral� ground states as well as the
quantum pitch angle of the spiral ground state. In addition, we provide a simple empirical formula which
describes the relation between the quantum pitch angle and the frustration parameter J2 /J1.
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I. INTRODUCTION

In recent years strongly frustrated quantum magnets ex-
hibiting exotic ground-state �GS� phases have been inten-
sively investigated both theoretically and experimentally
�see, e.g., Refs. 1–3�. At zero temperature all transitions be-
tween GS phases are driven purely by the interplay between
quantum fluctuations and the competition between interac-
tions �e.g., frustration� �see, e.g., Refs. 4–8�. Particular atten-
tion has been paid to one-dimensional �1D� J1-J2 quantum
Heisenberg models, which have been studied theoretically
with much success over the last two decades �see Ref. 7 and
references therein�. From the experimental side recent inves-
tigations have shown that edge-shared chain cuprates build a
special family of frustrated quantum magnets which can be
described by a quasi-1D J1-J2 Heisenberg model. Among
others we mention here LiVCuO4, LiCu2O2, NaCu2O2,
Li2ZrCuO4, and Li2CuO2,9–19 which were identified as
quasi-1D frustrated spin-1/2 magnets with ferromagnetic
nearest-neighbor �NN� in-chain J1 and antiferromagnetic
next-nearest-neighbor �NNN� in-chain interactions J2. These
cuprates have attracted much attention due to strong quan-
tum effects and the observation of incommensurate spiral
�helical� spin-spin correlations at low temperatures. Among
these materials Li2ZrCuO4 and Li2CuO2 are of particular in-
terest since these compounds are found to be near a quantum
critical point.17,19

The 1D frustrated spin-1/2 J1-J2 Heisenberg model may
serve as the simplest model to describe some important fea-
tures of such materials. The GS properties of the model in
the classical limit are well known, i.e., when the spin quan-
tum number s→�. In this case the GS does exhibit a second-
order transition from a collinear phase �ferro or antiferro� to
a noncollinear phase with spiral correlations along the chains
at J2= �J1� /4. For J2� �J1� /4 the classical spiral �pitch� angle
�cl is given by

�cl = arccos�− J1/4J2� . �1�

Similar expressions can be derived in the presence of further
couplings J3, J4, etc.; however, this more general case will
not be considered here for the sake of simplicity. Note that in
the classical limit neither the pitch angle �cl nor the transi-

tion point J2= �J1� /4 depends on the interchain coupling J�.
Such a classical relation as Eq. �1� between J1 ,J2 , . . . and the
pitch angle �cl has been used to justify 1D parameter sets
obtained from fitting ��T� data20 or by local-density approxi-
mation �LDA� mapping procedures.21 However, ignoring in
this way sizable quantum effects, such an approach is not
very convincing. Furthermore, in real materials additional
terms in the Hamiltonian such as anisotropy or exchange
coupling between the chains might be of relevance to yield a
quantitative theoretical description of the experimental re-
sults. The existence of helical long-range order at low tem-
peratures makes the importance of the interchain coupling
evident. However, from the theoretical side such extended
models so far are much less studied than the pure 1D “par-
ent” models.

Therefore, in the present paper we focus on the discussion
of the effect of the interchain coupling J� on the GS spin-
spin correlations in frustrated spin-1/2 Heisenberg model
consisting of a two-dimensional �2D� array of frustrated
chains coupled by J� �see Fig. 1�. In particular, we will
discuss GSs with incommensurate spiral �i.e., noncollinear�
correlations. Although, meanwhile many papers exist dealing
with spiral correlations in the strictly 1D system �J�=0�,22–28

the influence of the interchain coupling on the pitch angle to
the best of our knowledge has not been discussed so far.
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FIG. 1. �Color online� Illustration of the considered model �Eq.
�2�� of coupled frustrated Heisenberg chains.
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However, theoretical results for the considered system are
highly desirable since meanwhile there is an increasing
amount of experimental results for quasi-1D frustrated mag-
nets with spiral correlations which need theoretical explana-
tion.

The theoretical treatment of frustrated quantum antiferro-
magnets is far from being trivial. Although one can find ex-
act GSs in some exceptional cases �see, e.g., Refs. 22 and
29–32� standard many-body methods may fail or become
computational infeasible. For instance, the quantum Monte
Carlo techniques suffer from the minus-sign problem in frus-
trated systems. The density-matrix renormalization group
�DMRG� successfully used to discuss spiral correlations in
1D magnets23,25 is essentially restricted to 1D systems, at
least in the present state of the art. Also the exact diagonal-
ization technique used in Ref. 26 to find the pitch angle for
the 1D problem would be limited to extremely small chain
lengths when a finite interchain coupling should be consid-
ered. Spin-wave theory, one of the most successful approxi-
mations for spin systems, starts from the classical GS. Within
the linear spin-wave theory the classical pitch angle is not
renormalized. A renormalization of the pitch angle can only
be obtained by going beyond linear spin-wave theory in the
1 /S expansion, e.g., by using the Schwinger boson mean-
field theory. Schwinger boson mean-field theory was used,
e.g., in Ref. 33 for a similar �but not identical� system of
coupled chains, namely, a frustrated coupled ladder system.

Another method fulfilling the requirement to be able to
deal with frustrated spin systems at any dimension, including
magnetic systems with incommensurate spiral GSs, is the
coupled cluster method �CCM�. This method was already
used for the strictly 1D J1-J2 Heisenberg model and it was
shown that the CCM results are in good agreement with the
DMRG data.23 Hence, in the present paper we use the CCM
following the lines of Ref. 23 but extend the CCM calcula-
tions by including the interchain coupling J�.

The frustrated spatially anisotropic 2D J1-J2-J� spin-1/2-
Heisenberg model �see Fig. 1� considered here reads

H = �
n
��

i

�J1si,n · si+1,n + J2si,n · si+2,n��
+ �

i
�

n

J�si,n · si,n+1, �2�

where the index n labels the chains and i labels the lattice
sites within a chain n. The NN in-chain coupling J1 is fixed
to either J1=1 �antiferromagnetic� or J1=−1 �ferromagnetic�.
The interchain coupling J� and the frustrating NNN in-chain
coupling J2 are considered as varying parameters of the
model. Note that in the case considered here the interchain
coupling does not lead to frustration and it is practically of
arbitrary strength, i.e., including also the region beyond the
quasi-1D limit �J��� �J1� ,J2. Anyhow, the opposite limit
�J��� �J1� ,J2 will not be considered for reasons of lacking
physical relevance �to the best of our knowledge�. We focus
on the extreme quantum case, i.e., �si,n�2=s�s+1� with s
=1 /2. The main point which will be considered here is the
influence of the interchain coupling J� on the transition point
between the collinear phase and the noncollinear spiral phase

and on the pitch angle characterizing the spiral correlations
in the quantum model with s=1 /2.

II. COUPLED CLUSTER METHOD

In this section we outline only some main features of the
CCM which are relevant for the model under consideration.
Again we mention that we follow the lines described in Ref.
23 where the CCM was applied to the strictly 1D problem.
For more details of the method the interested reader is re-
ferred to Refs. 23 and 34–46. Special attention to the CCM
treatment of noncollinear GSs was paid in Refs. 23, 39–41,
43, and 44.

The starting point for the CCM calculation is the choice
of a normalized reference or model state ��	, together with a
complete set of �mutually commuting� multiconfigurational
creation operators 
CL

+� and the corresponding set of their
Hermitian adjoints 
CL�,

���CL
+ = 0 = CL��	, ∀ L � 0, C0

+ 
 1, �3�

�CL
+,CK

+� = 0 = �CL,CK� . �4�

With the set 
��	 ,CL
+� the CCM parametrization of the ket

GS eigenvector ��	 of the considered many-body system is
then given by

��	 = eS��	, S = �
L�0

aLCL
+. �5�

The CCM correlation operator S contains the correlation co-
efficients aL which can be determined by the so-called set of
ket equations

���CLe−SHeS��	 = 0, ∀ L � 0. �6�

For a more detailed discussion of the basic features of the
CCM we refer to Ref. 36. Here we give only some more
details of the method which are specific for the considered
frustrated quantum spin system. We choose a reference state
corresponding to the classical state of the spin model, i.e.,
the ferromagnetic state �↓↓ ↓ ↓¯	 along a chain for J1=−1
and small J2 and the Néel state �↓↑ ↓ ↑¯	 for J1=1 and
small J2, whereas for larger frustration J2 we have to choose
a noncollinear reference state with spiral correlations along
the chains �i.e., pictorially, ��	= �↑↗ → ↘ ↓ ↙¯	� charac-
terized by a pitch angle �, i.e., ��	= �����	. Such states in-
clude the ferromagnetic state ��=0� as well as the Néel state
��=	�. In the quantum model the pitch angle may be differ-
ent from the corresponding classical value �cl. Hence, we do
not choose the classical result for the pitch angle but, rather,
we consider � as a free parameter in the CCM calculation,
which has to be determined by minimization of the GS en-
ergy given in the CCM formalism by E���
= ������e−SHeS�����	, i.e., from dE /d� ��=�qu

=0 �see also
the Appendix, Eqs. �A1�–�A6��.

In order to find an appropriate set of creation operators it
is convenient to perform a rotation of the local axes of each
of the spins, such that all spins in the reference state align in
the negative z direction. This rotation by an appropriate local
angle 
i,n of the spin on lattice site �i ,n� is equivalent to the
spin-operator transformation
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� si,n
x = cos 
i,nŝi,n

x + sin 
i,nŝi,n
z , si,n

y = ŝi,n
y ,

si,n
z = − sin 
i,nŝi,n

x + cos 
i,nŝi,n
z � . �7�

The local rotation angle 
i,n can be easily expressed by the
pitch angle � of the spiral reference state, where the relation

i,n��� depends on the signs of J1 ,J� and the lattice vector
Ri,n.

In this rotated set of local spin coordinates the reference
state and the corresponding creation operators CL

+ are given
by

��̂	 = �↓↓↓↓¯	, CL
+ = ŝi,n

+ , ŝi,n
+ ŝ j,m

+ , ŝi,n
+ ŝ j,m

+ ŝk,l
+ , . . . , �8�

where the indices �i ,n� , �j ,m� , �k , l� , . . . denote arbitrary lat-
tice sites. This specified form of the creation operators CL

+

and the corresponding reference state ��̂	 immediately make
clear that the general relations �3� and �4� are fulfilled. More-
over, it is also obvious that for spin-half systems one has
�CL

+�n=0 for n�1. In the rotated coordinate frame the
Hamiltonian �2� becomes dependent on the pitch angle �. It
reads

H =
J1

4 �
i,n

�cos��� + 1��ŝi,n
+ ŝi+1,n

− + ŝi,n
− ŝi+1,n

+ � + �cos��� − 1�

��ŝi,n
+ ŝi+1,n

+ + ŝi,n
− ŝi+1,n

− � + 2 sin����ŝi,n
+ ŝi+1,n

z − ŝi,n
z ŝi+1,n

+

+ ŝi,n
− ŝi+1,n

z − ŝi,n
z ŝi+1,n

− � + 4 cos���ŝi,n
z ŝi+1,n

z

+
J2

4 �
i,n

�cos�2�� + 1��ŝi,n
+ ŝi+2,n

− + ŝi,n
− ŝi+2,n

+ � + �cos�2�� − 1�

��ŝi,n
+ ŝi+2,n

+ + ŝi,n
− ŝi+2,n

− � + 2 sin�2���ŝi,n
+ ŝi+2,n

z − ŝi,n
z ŝi+2,n

+

+ ŝi,n
− ŝi+2,n

z − ŝi,n
z ŝi+2,n

− � + 4 cos�2��ŝi,n
z ŝi+2,n

z

−
J�

A

2 �
i,n

�ŝi,n
+ ŝi,n+1

+ + ŝi,n
− ŝi,n+1

− + 2ŝi,n
z ŝi,n+1

z �

+
J�

F

2 �
i,n

�ŝi,n
+ ŝi,n+1

− + ŝi,n
− ŝi,n+1

+ + 2ŝi,n
z ŝi,n+1

z � , �9�

where ŝi,n

 
 ŝi,n

x 
 iŝi,n
y and � �

i,n−
i+1,n� is the pitch angle

between the two neighboring spins in a chain interacting via
the NN bond J1, which has to be determined for the quantum
model. For ferromagnetically coupled spin chains �J�

F �0�
one has to set J�

A =0 in Eq. �9� and vice versa. Therefore,
from Eq. �9� it is obvious that in the quantum case consid-
ered here the role of the �unfrustrated� interchain coupling J�

introduced in Eq. �2� is different for ferromagnetic and anti-
ferromagnetic J�. By contrast, in the classical case a corre-
sponding interchain coupling does not affect the pitch angle
at all.

The CCM formalism would be exact if we could take into
account all possible multispin configurations in the correla-
tion operator S which is impossible to do in practice for a
quantum many-body system. Hence, it is necessary to trun-
cate the expansions of S. In Ref. 23 it was demonstrated that
the so-called SUB2-3 approximation for the strictly 1D sys-
tem leads to results of comparable accuracy to those obtained
using the DMRG method. In the SUB2-3 approximation all

configurations are included which span a range of no more
than three contiguous sites and contain only two or fewer
spins. A particular advantage of the SUB2-3 approximation
consists of the possibility to find the relevant CCM equation
�6� in closed analytical form �see the Appendix�. These ex-
plicit equations provided here can be used to find the quan-
tum pitch angle �qu for an arbitrary set of parameters J1, J2,
and J� by simple numerical solution of them.

III. RESULTS

For the model under consideration we have calculated that
point J2

s where the GS state spin-spin correlations change
from collinear to noncollinear spiral correlations as well as
the quantum pitch angle �qu. In what follows we call the
point J2

s the “transition point.” We mention, however, that the
question for magnetic GS long-range order goes beyond the
scope of the present paper. Generally one can argue that for
the strictly 1D problem the GS �except the simple ferromag-
netic state� does not exhibit magnetic long-range order,
whereas for finite J� GS long-range order can exist �cf., e.g.,
Refs. 47–51�. In particular, the GS phase for larger J2 and
small J� is magnetically disordered and may have a weak
spontaneous dimerization along with finite-range incommen-
surate magnetic correlations.47 Hence the transition point J2

s

for small J� may locate that narrow parameter region, where
finite-range magnetic correlations are changing from com-
mensurate to incommensurate ones, but does not indicate a
true quantum phase transition.

We present data for J�= 
0,0.1,0.2, . . . ,1.0 and a fine
net of J2 values. For the sake of clarity in the following we
assort the results into four cases, depending on the signs of J1
and J�, namely, �i� J1=1 and J��0, �ii� J1=1 and J��0,
�iii� J1=−1 and J��0, and �iv� J1=−1 and J��0.

Since for cases �i� and �ii� the behavior is quite similar, we
can discuss both cases together. The pitch angle in depen-
dence on J2 is shown in Fig. 2 �case �i�� and Fig. 3 �case �ii��.
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FIG. 2. �Color online� The quantum pitch angle �qu versus J2

for antiferromagnetic J1 and J� �case �i��. The main panel shows
the difference between the quantum pitch angle �qu and its classical
counterpart �cl for various interchain couplings J�. The inset shows
the corresponding data for the quantum pitch angle �qu itself. For
comparison the classical pitch angle and the DMRG data of White
and Affleck �Ref. 25� for the strictly 1D quantum model are also
shown.
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For comparison we also draw the corresponding DMRG data
of White and Affleck25 for the strictly 1D problem in Fig. 2.
These data agree quite well with the CCM data in particular
for larger J2. It is obvious that quantum fluctuations change
the classical correlations drastically. In particular, in contrast
to the classical case, the collinear quantum state can survive
into the region J2�J2

s,cl=0.25, where classically it is already
unstable. This effect is known as order from disorder52,53 and
is widely observed in quantum spin systems.39,43,54,55 We
find, e.g., J2

s �0.68 for the quantum model with J�=0, which
is in good agreement with known results �see, e.g., Fig. 3 in
Ref. 26�.

Switching on J�, i.e., increasing the dimension of the spin
system, the effect of quantum fluctuations should become
weaker and, as a result, the collinear quantum state gives
way for the state with incommensurate correlations at
smaller values of J2, i.e., the transition point moves toward
the classical value �see Fig. 4�. However, even in nearly iso-
tropic 2D systems �J��1� the quantum fluctuations are still
important and one has J2

s �0.38 �J2
s �0.40� for case �i� �for

case �ii�� which is significantly above the classical value.
The shift of the transition point leads to an interesting

behavior of the difference �qu−�cl. It is positive for 0.25

�J2�J2
� but negative for J2�J2

�. Surprisingly we find J2
�

�0.7 as almost independent of J�, i.e., all curves �qu−�cl vs
J2 meet approximately in one point �see Figs. 2 and 3�. Note
that for large J2�J1 the model with strongest quantum fluc-
tuations, i.e., J�=0, approaches the limit �qu→	 /2 most
rapidly.

Next we discuss the behavior of the pitch angle at the
transition point. For smaller values of the interchain coupling
�J��0.7 for case �i� and J��0.8 for case �ii�� we find a
discontinuous behavior of the quantum pitch angle. A similar
jumpwise change of the pitch angle has been found for 2D
frustrated quantum spin models.39,43 Note that in Ref. 23 the
CCM curve was terminated before the jump occurs, so that
the jump has not been observed there.56 The discontinuous
change of �qu is related to the existence of two minima in the
E versus � curve and takes place for parameter values where
both minima have equal depth �cf. Fig. 5�. For larger J�

�weaker quantum fluctuations� E��� exhibits only one mini-
mum and the quantum pitch angle is changing continuously
from the collinear to the spiral GS. We remind the reader that
for the classical case the transition from the commensurate to
the incommensurate GS takes place at J2= �J1� /4 and that it is
continuous for any value of J�.

Finally, in Fig. 6 we have drawn the pitch angle �qu in
dependence on the interchain coupling J� for case �i�. As
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FIG. 3. �Color online� The quantum pitch angle �qu versus J2

for antiferromagnetic J1 and ferromagnetic J� �case �ii��. The main
panel shows the difference between the quantum pitch angle �qu

and its classical counterpart �cl for various interchain couplings J�.
The inset shows the corresponding data for the quantum pitch angle
�qu itself. For comparison the classical pitch angle is also shown.
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FIG. 4. �Color online� The transition point J2
s as a function of

the interchain coupling J� for J1=1 and J��0 �case �i�� as well as
J��0 �case �ii��. The triangles indicate a discontinuous and the
squares a continuous change of �qu.
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FIG. 5. �Color online� The GS energy versus pitch angle � for
different �fixed� J2 and antiferromagnetic J1 �J�=0�.
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FIG. 6. �Color online� The quantum pitch angle �qu versus J�

for antiferromagnetic J1=1 �case �i�� and various values of the frus-
trating NNN exchange J2 �the lines are guides for the eyes�. The
inset shows the data for J2=0.7,0.8,0.9 with an enlarged scale.
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discussed above, with increasing J� the quantum pitch angle
moves toward the corresponding classical value. However, in
accordance with the above discussion of the change in the
sign of �qu−�cl we find two different regimes: for J2�J2

� the
�qu increases with growing J� while for J2�J2

� the �qu de-
creases with J�.

Let us now pass to cases �iii� and �iv�, i.e., when J1=−1 is
ferromagnetic. In contrast to cases �i� and �ii�, we find that
here the transition from the collinear state to the spiral state
is always continuous. The reason for that can be again attrib-
uted to the strength of quantum fluctuations. For ferromag-
netic J1 the relevant collinear state at J2�J2

s consists of fer-
romagnetic chains, having a classical �i.e., “nonfluctuating”�
GS, coupled by J�. While for case �iv� the ferromagnetic
interchain coupling does not change this nonfluctuating GS
at all, for case �iii� due to the presence of antiferromagnetic
couplings quantum fluctuations become relevant and the GS
becomes a true quantum state, but the change in magnetic
correlations within the chains for J��0 remains weak.
Hence, virtually no �case �iv�� or only weak �case �iii�� quan-
tum fluctuations occur at the transition from the collinear to
the noncollinear GS. As a result the transition takes place
precisely at J2= �J1� /4 for case �iv� while for case �iii� the
transition point J2

s is above the classical value indicating
again an order from disorder effect. However, the shift of J2

s

is small because the quantum fluctuations are weak �see Figs.
7 and 9�. Nevertheless, such a small shift of J2

s due to a finite
interchain coupling might be important for systems such as
Li2ZrCuO4 and Li2CuO2 �Refs. 17 and 19� which are near
the transition point. Note that Bader and Schilling57 first
found that the transition point is fixed at J2= �J1� /4, if the
collinear state is the classical ferromagnetic one. Note further
that a similar change from a discontinuous to a continuous
transition was discussed in Ref. 40.

The quantum pitch angle for cases �iii� and �iv� is shown
in Figs. 7 and 8. Obviously, there is also a significant differ-
ence between the quantum and the classical pitch angles;
however, it is smaller than for cases �i� and �ii�. For J�=0
the largest difference of about 0.09	 is found at J2�0.5. For

case �iv� for all values of J��0 and J2�0.25 the quantum
pitch angle is larger than the classical one. On the other
hand, for case �iii� the shift of the transition point J2

s leads to
a change in the sign of �qu−�cl, i.e., the antiferromagnetic
interchain coupling yields are more subtle change in the GS
correlations by quantum fluctuations. Moreover, due to the
shift of J2

s we find a quite large difference ��qu−�cl� for J�

�0 and J2�0.27–0.28 �see Figs. 7 and 9�.
Similarly for cases �i� and �ii� we observe that for large

J2�J1 the model with strongest quantum fluctuations, i.e.,
J�=0, approaches the limit �qu→	 /2 most rapidly. We
mention here that a large value of �J2 /J1� is realized, e.g., in
LiCuVO4,9,12,15 for which J2 /J1�−2.4 has been
estimated.12,15 The variation of �qu with J� for various J2 is
shown in Fig. 10. It can be seen that the variation of �qu with
J� is largest for small J�. Furthermore, in difference to cases
�i� and �ii� �qu decreases monotonously with J� for all values
of J2�J2

s .
As mentioned in Sec. I, ignoring quantum effects a clas-

sical relation like Eq. �1� between the exchange couplings
and the pitch angle has been used to discuss the J2 /J1 ratio in
Refs. 20 and 21. To overcome this problem we will provide
an empirical formula that fits the continuous part of �qu�J2�
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FIG. 7. �Color online� The quantum pitch angle �qu versus J2

for ferromagnetic J1 and antiferromagnetic J� �case �iii��. The main
panel shows the difference between the quantum pitch angle �qu

and its classical counterpart �cl for various interchain couplings J�.
The inset shows the corresponding data for the quantum pitch angle
�qu itself. For comparison the classical pitch angle is also shown.
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FIG. 8. �Color online� The quantum pitch angle �qu versus J2

for ferromagnetic J1 and J� �case �iv��. The main panel shows the
difference between the quantum pitch angle �qu and its classical
counterpart �cl for various interchain couplings J�. The inset shows
the corresponding data for the quantum pitch angle �qu itself. For
comparison the classical pitch angle is also shown.
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given in Figs. 2, 3, 7, and 8 very well. Having in mind that
the shape of the continuous part of �qu�J2� resembles the
classical behavior, we find that �qu�J2� is well approximated
by �written now in dimensional exchange units for the con-
venience of application in real experimental situations�

�qu�J2� = arccos� − J1

�4�J2 − J2
s + 1

4 �J1����� �10�

with the exponent � as fitting parameter. Obviously, Eqs. �1�
and �10� coincide for J2

s = �J1� /4 and �=1. In Fig. 11 we show
� in dependence on J� for the four cases �i�–�iv�. We find
that � is always larger than the classical value �cl=1. In
accordance with the above discussion, � decreases with in-
creasing J�; i.e., it goes toward the classical exponent �cl.
From the experimental point of view the edge-shared chain
cuprates are of particular interest. The parameter situation of
these compounds corresponds to case �iii�. Hence, we give
here simple fit formulas for that case which describe the
behavior of J2

s�J�� as shown in Fig. 9 and the behavior of
��J�� as shown in Fig. 11 by the red line. We find that the
relation

� =
a

� J�

�J1�
+ b�c , J2

s =
�J1�
4

+ p�J1�tanh�q
J�

�J1�� �11�

with a=1.37, b=0.13, c=0.17, p=0.036, and q=2.11 pro-
vide a reasonable fit of our data for case �iii�. In addition, we
present numbers for J2

s and � for various values of J� for all
cases in Table I. The fitting formula �11� as well as the data
in Table I can be used in combination with Eq. �10� to fix the
J2 /J1 ratio using the pitch angle � as an input, e.g., from
neutron scattering.9,10,12,20

Finally, we note that recently the pitch angle of
Li2ZrCuO4 has been determined from 7Li-NMR data to
amount �=33° 
2°.18 This value corresponds to a predicted
ratio −J2 /J1=0.298 within the framework of the classical Eq.
�1�. This value is surprisingly very close to the ratio −J2 /J1
=0.3 estimated from thermodynamic properties within the
1D-quantum spin-1/2 J1-J2 model.17 However, from Fig. 10
for a realistic weak effective antiferromagnetic interchain
coupling J��0.1�J1� a somewhat larger pitch angle would
be predicted, namely, ��42° for −J2 /J1=0.3. Hence, other
factors such as a sizeable exchange anisotropy are expected
to be relevant in this material. Such an anisotropy may lead
to a modification of the classical spiral as well as to a reduc-
tion in quantum fluctuation compared with the isotropic-spin
model considered here. The corresponding effects are outside
the scope of the present paper. They will be considered else-
where.
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TABLE I. Numerical values for the exponent � and the transi-
tion point J2

s in dependence on J� for the cases �i�–�iv� �cf. Eq.
�10��.

�i�: J1=1,J��0 �ii�: J1=1,J��0

�J�� J2
s � J2

s �

0.70 0.426 1.364

0.80 0.409 1.317 0.433 1.341

0.90 0.397 1.283 0.418 1.294

1.00 0.386 1.256 0.405 1.258

�iii�: J1=−1,J��0 �iv�: J1=−1,J��0

J2
s � J2

s �

0.00 0.250 1.972 0.250 1.972

0.10 0.256 1.761 0.250 1.742

0.20 0.264 1.662 0.250 1.630

0.30 0.270 1.588 0.250 1.552

0.40 0.275 1.530 0.250 1.494

0.50 0.278 1.483 0.250 1.448

0.60 0.280 1.443 0.250 1.411

0.70 0.282 1.410 0.250 1.380

0.80 0.283 1.381 0.250 1.354

0.90 0.284 1.357 0.250 1.331

1.00 0.285 1.336 0.250 1.312
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IV. SUMMARY

Based on the CCM we have studied the GS correlations of
a 2D array of frustrated spin-1/2 J1-J2 chains coupled by an
interchain exchange interaction J�. We have discussed the
influence of quantum fluctuations, frustration, and interchain
coupling on the pitch angle and the transition point between
a GS with collinear commensurate correlations and a GS
with incommensurate spiral correlations. Using the CCM
within the so-called SUB2-3 approximation we obtain a
closed set of analytical equations which can be used to cal-
culate the pitch angle for an arbitrary set of exchange param-
eters. We have found that for J2�0.25�J1� the pitch angle of
the quantum model significantly deviates from the classical
value and can be strongly influenced by the interchain cou-
pling J�. Furthermore, we have observed that the quantum
pitch angle approaches its limiting value of 	 /2 for increas-
ing values of J2 much faster than for the classical model. For
several combinations of the sign of J1 and J� we have found
that the change in the pitch angle within the quantum model
could be discontinuous while the change of the pitch angle
within the classical model is always continuous.

The problem of antiferromagnetically or ferromagneti-
cally coupled frustrated spin-1/2 J1-J2 chains investigated in
detail in this paper to the best of our knowledge so far has
not been considered. Hence, it would be interesting to com-
pare our CCM results with those to be obtained by other
methods such as the Schwinger boson approach which is an
alternative method to deal with noncollinear ground states in
2D quantum spin systems.33
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APPENDIX: CCM SUB2-3 APPROXIMATION

Within the SUB2-3 approximation scheme the CCM cor-
relation operator S �see Eq. �5�� contains five nonequivalent
correlation coefficients aL �L=1, . . . ,5� corresponding to the
lattice configurations shown in Fig. 12. These configurations
�or lattice animals� represent the arrangement of spin opera-
tors acting on the lattice spins. To each configuration belongs
a corresponding ket equation �see Eq. �6��. The set of these
ket equations can be found by a bit tedious but straightfor-
ward calculation. It reads

J1

4

�cos��� − 1��1 − 12a1

2 + 8a2
2 + 8a3

2 + 8a4
2 + 24a5

2�

+ 4a2�cos��� + 1� − 8a1 cos���� +
J2

4

�cos�2�� − 1�

��16a3a5 − 16a1a2� + 4a1�cos�2�� + 1�

− 16a1 cos�2��� +
J�

F

2
�8a5 − 8a1�

−
J�

A

2
�16a4a5 − 16a1a3 + 16a2a5 − 8a1� = 0, �A1�

J1

4

�cos��� − 1��− 16a1a2 + 16a3a5� + 4a1�cos��� + 1�

− 16a2 cos���� +
J2

4

�cos�2�� − 1��1 − 12a2

2 + 8a1
2 + 8a3

2

+ 8a4
2 + 16a5

2� − 8a2 cos�2��� −
J�

F

2
�8a2�

−
J�

A

2
�16a1a5 − 16a2a3 − 8a2� = 0, �A2�

J1

4

�cos��� − 1��− 16a1a3 + 16a2a5 + 16a4a5�

+ 8a5�cos��� + 1� − 16a3 cos���� +
J2

4

�cos�2�� − 1�

��− 16a2a3 + 16a1a5� − 16a3 cos�2��� +
J�

F

2
�4a4 − 4a3�

−
J�

A

2
�1 − 12a3

2 + 8a1
2 + 8a2

2 + 8a4
2 + 24a5

2 − 4a3� = 0,

�A3�

J1

4

�cos��� − 1��− 16a1a4 + 16a3a5� − 16a4 cos����

+
J2

4

�cos�2�� − 1��− 16a2a4 + 8a5

2� − 16a4 cos�2���

+
J�

F

2
�4a3 − 8a4� −

J�
A

2
�− 16a3a4 + 16a1a5 − 8a4� = 0,

�A4�

J1

4

�cos��� − 1��16a2a3 − 16a1a5 + 16a3a4�

+ 8a3�cos��� + 1� − 32a5 cos���� +
J2

4

�cos�2�� − 1�

��16a1a3 − 32a2a5 + 16a4a5� + 8a5�cos�2�� + 1�

a a a

aa

1 2 3

4 5

FIG. 12. Illustration of the five configurations on the spin lattice
which contribute to the CCM SUB2-3 approximation. Each con-
figuration is related to a particular multiconfigurational creation op-
erators 
CL

+� and to the corresponding correlation coefficient aL �L
=1, . . . ,5� �see Eqs. �5� and �8��. The circles in the figure represent
lattice sites; the black circles indicate the position of the flipped
spins in a certain configuration.
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− 32a5 cos�2��� +
J�

F

2
�8a1 − 16a5� −

J�
A

2

��16a1a2 − 16a3a5 + 16a1a4 − 16a5� = 0. �A5�

The GS energy is a function of �some of� these correlation
coefficients and of the pitch angle �. It reads

E =
J1

4

2a1�cos��� − 1� + cos���� +

J2

4

2a2�cos�2�� − 1�

+ cos�2��� +
J�

F

4
−

J�
A

4
�4a3 + 1� . �A6�

Note that in the above equations one has to set J�
A

=0 �J�
F =0� and to replace J�

F with J� �J�
A with J�� for fer-

romagnetic �antiferromagnetic� J�. To determine the quan-
tum pitch angle �qu as a function of the parameters J1, J2,
and J�, one has to solve the equation dE /d� ��=�qu

=0 �cf.
Sec. II� together with the set of ket equations �A1�–�A5�
self-consistently by standard numerics.

Finally, we will illustrate some limiting cases contained in
Eqs. �A1�–�A5�. For J�=0 one has a3=a4=a5=0 and the
remaining two nontrivial Eqs. �A1� and �A2� then coincide
with the corresponding equations given in Ref. 23. In case of
J2=0, J�=0, and a3=a4=a5=0 but J1�0 �or alternatively,
J2=0, J1=0, and a1=a2=a5=0 but J��0� one finds the two
ket equations for the simple unfrustrated linear chain.
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